
Automated Pen Plotter
Anthony DeMore, Patrick Caughey, Al
Moatasem Al-Abri, Peregrino Quansah

Dept. of Electrical and Computer
Engineering, University of Central

Florida, Orlando, Florida, 32816-2450

Abstract - A pen plotter is a device
with a similar goal in mind as a standard
inkjet or laser printer, but with a different
process and appearance of outputs that
cannot be replicated. Our pen automated
pen plotter design has been created for pen
plotting hobbyists to create unique works
of art in an easy and efficient manner. We
are able to accomplish this by the use of a
robust graphical user interface which the
user is able to interact with in many
different ways to create their perfected
output. This is paired with a visually
interesting and mechanically sound
plotting design and hardware which allow
the user's design to take shape on paper.
Many of the current pen plotters on the
market today are rather expensive and it
was our goal to create a cheaper design
that still has any feature a user may desire.
This paper presents the elements which
make up our design, our testing process as
well as our reasoning and thought
processes behind the making of our pen
plotter.

I. Introduction

Printing as we know it has been around for
quite some time now. The majority of printers
we see on the market are inkjet and laser. A
somewhat forgotten form of mechanically
outputting images to paper format is known as
pen plotting. A major reason for this is the
lower cost and speed of inkjet and laser
printers cannot be matched by pen plotters.
However, the unique output style and artistic

expression ability of the pen plotter cannot be
matched by modern printers and that is what
our group hopes to showcase with our project.

Many existing pen plotters are expensive and
difficult to use. There is also a very small
market so creating competition within this
market is a goal of ours which would spark
innovation and choice for the user. We are
able to achieve these goals by the use of
powerful and relatively inexpensive
mechanical and electronic parts, paired with
software based on carefully thought out
industry-standard open source software.

Our capable and robust user interface allows
the user to control the plotter in many
different ways and allows for versatility when
creating an output image. The user interface
is connected to the device's firmware, this
firmware translates the user interface
commands and allows for the movement
along our plotter's three separate axes. The
control software is controlled by our PCB
design which is based on an Arduino Uno
which we used throughout our development
and testing process. Each axis is controlled
by a stepper motor which requires a driver
PCB for each unit. Each of the three axes is
powered by separate Nema 17 Stepper motors
and is moved by a pulley system along their
respective linear rails.

The resulting output image can only occur
with the precise movement of our plotter
which can only be achieved by each layer of
our design described in the following sections
working simultaneously for the best user
experience.

Below is a block diagram depicting the
overall workflow and structure of our pen
plotter design:

Overall Block Diagram

II. System Components
At the broadest scope, the system is made up
of three components, which are the software,
which runs on the computer, the firmware,
which runs on the microcontroller, and the
hardware, which includes all of the moving
parts. These three components follow a chain
of command, where the software sends
G-code instructions to the firmware, which
then interprets them and controls the hardware
using pulse width modulation (PWM).

The software used is a modified version of a
free-to-use G-code sender. The first
component of the software is the G-code
generator. With this, the software is capable of
generating G-code from a variety of sources.
It can generate G-code from scratch for
simple rectangles and text based on fonts
specifically made for it. It can also generate
G-code from vector-based image files such as
*.svg files. The default drawing method for
*.svg files is to trace around the shape, though
there are also options to fill in the shape. The
software is multipurpose, so it has options that
are not useful for this project, and would not
be worth removing.

The second component of the software is the
direct control and calibration tools. The

software gives the user a control panel to
manually move the pen around the working
area. This is useful for manually calibrating
the zero position of the system, which is
useful for testing and allows the system to be
tested.

The third component of the software is the
actual G-code sender portion. The G-code
sender sends individual G-code instructions to
the plotter. It also keeps track of a simulated
plotter, so it knows where the pen is at all
times, which the user can compare with the
real pen to visually confirm that everything is
going well.

The fourth component of the software is the
preview window, which allows the user to
preview the drawing that the pen plotter will
make, and to move, rotate and scale
components of it to edit the drawing. It is also
the window that shows where the simulated
plotter is and how much of the drawing has
been sent as a G-code to the plotter.

The G-code is sent from the software to the
plotter from one of the computer’s USB A
ports to the PCB’s USB B port.

The firmware used is a modified version of a
free-to-use grbl plotter firmware. The
firmware of the plotter needs to take in
G-code commands and control the hardware.
The first component of the firmware is the
G-code accepter, which takes in G-code and
puts them into a queue which is then used to
calculate motion values for the motors.

The second component of the firmware is the
motion calculator, which calculates the best
speeds for the motors in order to follow the
path at the target speed.

The third component of the firmware is the
motor drivers, which control the motors using
PWM.

The hardware must be capable of moving the
pen in all three dimensions and holding the
pen. The first component of the hardware is
the X and Y axes, which use belts, linear rails,
and stepper motors to move the pen in two
dimensions.

The second component of the hardware is the
Z axis, which uses a stepper motor to lift the
pen holder or let it come down.

The third component of the hardware is the
pen holder, which uses a clamp to hold the
pen in place.

III. Hardware Design and electrical
components

A. System Block Diagram.

Fig. 1. System Block Diagram.

The figure above is for our system block
diagram. Our system block diagram is
divided into two parts: the first part is the

microcontroller and the computer and the
second part represents the mechanical
movement. For the first part, the
microcontroller will be connected directly to
the computer, and the user will be using the
computer to send data and commands to the
microcontroller. For the mechanical
movement part, the microcontroller will be
connected to three stepper drivers and a
servo, and the microcontroller will be
responsible for sending clock signals to them,
where the stepper drivers will control the
direction and the movement of the stepper
motors and the stepper motors will move the
rails along the x-axis, y-axis, and z-axis. The
servo will be used to change the pen color
when it is needed, so if there is an output that
uses two different colors the servo will be
responsible for holding and releasing the pen.

B. Power Distribution.

For the power distribution in our project, there
will be two different power sources used. For
the first power source, we will be using an AC
to DC power converter which will be
converting the 120V that is coming from the
wall outlet to a useful 12V, and this 12V will
be used by the

stepper motors. For the second power source,
we will use the USB port that is coming from
the computer which will be providing us with
5V which is needed to power the
microcontroller, three stepper drivers, and the
servo.

In order to control the whole project will need
to use two different chips one is the
microcontroller chip and the other one is a
USB chip.

C. Microcontroller.

For the microcontroller chip, we decided to
use the ATMEGA328p. This chip has 32KB

flash memory and 2KB SRAM which is
enough to operate a project such as our
project. Also, this chip operates between
1.8-5.5 volts and it can be found for $6.28. the
other chip that we will need in our project is
the connector between the USB port and the
microcontroller where this chip will be used
to send commands and data from the
computer to the microcontroller, so we chose
to use the FT232R which is a USB to serial
UART interface with optional clock generator
output. This chip will help in sending the
user's input to the microcontroller, this chip
has 28-pins and it can work with 3.3V -
5.25V.

D. Stepper motors.

For the movement in the project and to move
the rails across the x-axis, y-axis, and z-axis
we will need to use motors. There are several
types of motors that can be found in markets,
however, there is one famous motor that is
commonly used in 3D printing which is the
Nema 17 stepper motor, this type of motor
can be found in many other projects such as
Robotics, CNC Machining, and Laser cutters.
This type of stepper motors provides high
torque at low speed and the torque rating for
them is 45 N*cm, also these stepper motors
have a 1.8-degree step size which means that
for every step the motor increments it will
rotate 1.8 degrees in the direction that is
needed where they have 200 steps per
revolution. The Nema 17 stepper motors have
an open-loop system which means that there
is no feedback.

E. Stepper Drivers

To control and operate stepper motors we will
need to use stepper drivers. The stepper
drivers that we are using will be working as
the voltage supply for the stepper motors
where they can operate under a minimum

voltage of 8V and a maximum voltage of 36V,
also stepper drivers help on providing the
required current by the stepper motors which
is 1.2A. stepper motors can also change the
polarity so they can move the stepper motors
in the opposite direction, additionally, they
can a very accurate movement at low speed
by changing the step size. There are different
types of stepper drivers that can do the same
work that we need and for our project, we are
using the A4988 stepper drivers.

F. Limit Switches

One important component we will need to use
in our project is limit switches. Limit switches
are electromechanical devices used to detect
the presence or absence of movement; they
are commonly used in projects that have
moving parts such as our project where the
rails will be moving in different directions.
Limit switches work on controlling the
movement of the moving parts where
sometimes they prevent the moving part from
moving and sometimes they allow the moving
part to move, so limit switches work when the
moving part touches them and whether they
open or close the circuit depends on what they
are needed to do. In our project, we are using
three limit switches, one for the x-axis, one
for the y-axis, and one for the z-axis. They
work to stop the motors when it reaches a
certain limit by closing the circuit when the
moving part touches the limit switch.

IV. Software Design
The successful operation of this project
cannot be achieved without the use of the
appropriate software components. Most of the
software used in this project is open source
but has been modified to meet the
specifications of our project. This section
gives an insight into the kind of tools used for

the software composition and the various
software combined to bring life to the
hardware. The software components can be
broken down into two:

1) The firmware
2) The control software.

Fig 2. High-level Software Flow

A. Software tools.

Putting together the various software for this
project required the use of various software
tools. The first software tool we used was the
Arduino Integrated Development
Environment. We needed the Arduino IDE to
edit the selected firmware for our
microcontroller. The Arduino IDE was also
used to flash the firmware onto the
microcontroller. The reason we opted for the
Arduino IDE over the various IDEs out there
is that the Arduino IDE is specific to the
microcontroller we used for the project. It also
has a fairly simple user interface that allows
the user to accomplish their task with
minimum complications. It is also popular,
hence it has loads of resources and support on
the internet which makes it easy to get help
when needed.

Fig 3. Arduino IDE

The second tool used for software
development is the famous Visual Studio code
IDE. We used the VS code to modify our
chosen open-source controller software. VS
code enabled us to remove certain unwanted
features and also make some additions. VS
code comes with the ability to install
packages specific to our project which makes
it very useful and versatile.

Fig 3. VS Code

B. The Firmware

The firmware we used for our project is the
GRBL firmware. It is an open source high
performance, low-cost alternative to
parallel-port-based motion control for CNC
projects. It runs with most of the Arduino
boards out on the market, another reason for

choosing this firmware. It achieves precise
timing and asynchronous operations. We
make a few changes to the original software
like changing the default frequencies of the
control pin, and also add a few lines of code
to enable 3-axis homing instead of the 2
default. Its main responsibility is to accept
G-code from the control software, interpret it
and send the interpretations to the motors
onboard to act on it.

C. The control software

For the control software, we used an open
source software called the GRBL-Plotter
which is solely dedicated to controlling
plotters. This control software comes with a
graphic converter through which the user can
generate G-code from images and graphics.
For this software, we removed certain features
like the laser controlling feature that were not
utilized in this project and added a few lines
of code to meet our design specification.
Using the control software, the user can
upload images, write texts, upload SVG files
and generate G-code from them. It also
provides the feature where the user can see
the progress of the plotting and also track
movements of the pen while displaying the
G-code as it runs. There is also a debug
window that enables the user to make changes
in real-time.

Fig 4. GUI of control software

V. Testing Results
The initial stages of testing involved
determining if there was communication
between the development board controlling
the stepper motors on the plotter and the
desktop application interface. Once this
connection was established, initial movement
tests were conducted. This was a somewhat
meticulous process at first, as the limit
switches were not installed, and the
movement was done through a tool on the
interface and not via g-code commands sent
by a specified output image. There was a
good amount of trial and error getting the
speed of the plotter and distance traveled per
motor rotation correct for our purposes.
During this testing, we realized some
modifications needed to be made to our
mechanical design in order to increase
stability and precision. Our z-axis movement
was the thing that was most hindered by the
3d printed pen holder of our design. It had to
be modified later in order to create our desired
product. We tested the range of motion of our
plotter, the working area we decided on was
larger than that of a standard 8 x 11 paper and
we were able to achieve movement in our
working area of 12 x 16 inches, which was
determined to be more than enough to create
large and detailed works of art.

We then began testing moving and plotting
speed. We desired roughly 20 mm/s plotting
speed based on rough estimates and known
pen plotter movement speeds. We initially
were running at a much slower rate than our
desired time. Around 8 mm/s were the testing
results seen by drawing the same shape of a
known drawing distance and timing the time
to completion. We were able to increase this
speed as well as maintain the integrity of the
outputs by increasing the parameters
controlling the stepper motors.

Our next goal for testing was the precision
and accuracy of artistic outputs based on the
desired output shown in the user interface.
This is likely the most important testing
process as the output is the most important
part of our design. The output needs to show
a quality image with no discernible
differences from the desired output the user
set in the interface. Initially, we experienced
some inaccuracies in our output due to some
of the pulley systems not functioning
correctly. As seen below, the two headphone
drawings below have slight variations and are
not as accurate as desired.

Image 1: Slight Inaccuracies During Initial
Testing

This was corrected by tightening our pulley
system and making sure there was no slippage
on the teeth of the pulley during longer plots.
We also needed to make sure the writing
surface was secured in order to avoid any
paper movement which could cause an
undesirable output. After we improved our
pulley accuracy, the outputs improved
tremendously as seen in the after image of
three more of the same headphone outputs
seen below. These are the same outputs as
seen above, but they are all virtually
indistinguishable from each other as we
desired with our accuracy specifications set
during our design stages.

Image 2: Inaccuracies Corrected

VI. Conclusion
We believe that our pen plotting design was a
success overall and an enjoyable process
throughout. We achieved our goals of
creating a usable and mechanically sound
plotter with outstanding movement and
precise drawing capabilities. The user
interface which we were able to integrate with
our design also worked very well alongside
the onboard firmware. The outputs of our
project exceeded our expectations and it was
enjoyable to see the reactions of others when
our device was creating a work of art.

There were a few aspects of our design and
design process as a whole that could be
improved upon, but this was a great medium
for challenging us as engineers and preparing
us for our futures. This project overall was a
great learning experience for all of us. Not
only in the design aspects of software and
hardware, but also in terms of working as a
team, establishing goals, creating a managing
a budget, and other important aspects of
engineering which are not taught in typical
class curriculums. These experiences are
something we can all consider when
managing our future careers and there are
many valuable lessons we are learning
throughout this process.

VII. The Engineers

Almoatasem Alabri is a
23-year-old senior Electrical Engineering
student at UCF. He expects to graduate in
August 2022.

Peregrino Quansah
is a graduating senior Computer Engineering
Student at the University of Central Florida.
He hopes to work with a reputable Software
Engineering firm where he can put the
knowledge acquired to practice.

Anthony DeMore is
a Computer Engineering student who will be
graduating in August 2022. He currently
works as an intern at Leidos, a defense
contractor, and has accepted an offer to work
post-graduation. He is interested in working
in simulation software and computer vision.

He is also considering obtaining a master's
degree in computer science.

Patrick Caughey is
a senior in Computer Engineering graduating
in August. He hopes to work as a video game
developer to develop his dream game.

VIII. References
[1] written by John, John. “Best CNC
Software [2022] for Hobbyists and Pros [Free
and Paid].” MellowPine, 20 Feb. 2022
[2] “Platformio vs Arduino Eclipse Plugin.”
Compare Differences &
Reviews?,https://www.saashub.com/compare-
platformio-vs-arduino-eclipse-plugin.
[3] “Top 15 Best Embedded Systems
Programming Languages.” UbuntuPIT, 29
Apr. 2021,
https://www.ubuntupit.com/best-embedded-sy
stems-programming-languages/.

